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Abstract

This paper models the use of statistical hypothesis testing in regulatory ap-

proval. A privately informed agent proposes an innovation. Its approval is beneficial

to the proponent, but potentially detrimental to the regulator. The proponent can

conduct a costly clinical trial to persuade the regulator. I show that the regulator

can screen out all ex-ante undesirable proponents by committing to use a simple

statistical test. Its level is the ratio of the trial cost to the proponent’s benefit

from approval. In application to new drug approval, this level is around 15% for

an average Phase III clinical trial.

The practice of statistical hypothesis testing has been widely criticized across the many

fields that use it. Examples of such criticism are Cohen (1994), Johnson (1999), Ziliak

and McCloskey (2008), and Wasserstein and Lazar (2016). While conventional test levels

of 5% and 1% are widely agreed upon, these numbers lack any substantive motivation.

In spite of their arbitrary choice, they affect thousands of influential decisions. The

hypothesis testing criterion has an unusual lexicographic structure: first, ensure that the
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probability of Type I errors does not exceed a given conventional level under the null

hypothesis, then do the best you can to reduce the probability of Type II errors. It is

difficult to motivate this structure by considering statistical decision problems. Instead,

both Bayesian and frequentist criteria in some way seek to balance the probabilities of

both Type I and Type II errors.

This paper focuses on one of the most important contexts in which hypothesis testing is

used: regulatory approval of innovations like new pharmaceuticals and medical devices. It

is prescribed, for example, in the international guidelines for drug approval (International

Committee on Harmonisation, 1999). Hypothesis testing is also used less formally when

evidence in favor of some proposed policy is judged on the basis of being “statistically

significant.” Viewed as decision rules for choosing between two alternative treatments,

hypothesis tests with standard significance levels are strongly biased in favor of the status

quo. When an immediate choice between two options must be made, Simon (1945) argued

that it would be more sensible simply to choose the one favored by the available evidence,

even if only by a small margin. This decision rule is essentially a one-sided test with 50%

level. A recent line of literature applying the minimax regret criterion to treatment choice

problems reaches similar conclusions (Manski, 2004; Manski and Tetenov, 2007; Schlag,

2007; Hirano and Porter, 2009; Stoye, 2009). Decision rules similar to hypothesis tests

could be motivated by loss aversion under average risk (Hirano and Porter, 2009) or

minimax regret (Tetenov, 2012) criteria, but obtaining tests with conventional levels in

this framework requires extreme degrees of loss aversion (Tetenov, 2012).

I study regulatory hypothesis tests as a strategy in a game against economically

motivated proponents, rather than in a game against nature. The regulator’s statistical

decision rule creates incentives that can affect the pool of innovations that are proposed

and tested. This important consideration is absent in the analysis of games against

nature. In many applications of statistical testing, proponents of innovations have private

information about their quality that is not accessible to the regulator. Proponents often

stand to benefit from the approval decision even if the innovation is inferior from the

regulator’s perspective.
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While the supply of positive innovations is limited, it may be reasonable to con-

sider the pool of potential bad innovations to be almost unbounded. Pharmaceutical

development process, for example, generates thousands of candidate compounds that can

plausibly be effective for a given condition. Similarly, one could propose many plausible

educational reforms or poverty-reducing programs. An “innovator” may know ex ante

that the proposal was chosen with no substantive basis, but reliance on statistical evi-

dence entails that with some probability the evidence will turn out to be strong enough

for the proposal to be accepted. The regulator could incur great losses if her statistical

tests do not deter such frivolous “innovators” from trying their luck.

I restrict attention to the problem of statistical testing of innovations when the only

tool available to the regulator is to accept or reject the innovation based on credible data

coming from a costly trial with a known statistical structure. The regulator can deter the

proponents of inferior innovations from seeking approval by committing to a statistical

test. A sufficiently strict test ensures that the probability of Type I errors (acceptance of

bad innovations) is smaller than the ratio between the proponent’s cost of collecting the

evidence (e.g., clinical trials) and the proponent’s benefit from the regulator’s acceptance.

I show that hypothesis tests at this level are optimal for a regulator having maximin

utility1 with ambiguity regarding the quality of potential proposals. This framework

provides a decision-theoretic rationale for using one-sided hypothesis testing in statistical

treatment choice problems and a rule for choosing the test level.

I show that the same solution is obtained in the limit case if the regulator places a

prior distribution over the quality of potential proposals. As the probability assigned

to inferior innovators increases, the Bayesian regulator’s optimal policy converges to the

same simple one-sided hypothesis test rule that deters the testing of all inferior proposals.

Statistical testing is harder to analyze if the proponents themselves are imperfectly

informed about the quality of their innovations. I show that the maximin property of the

proposed hypothesis tests extends to a more general setting in which proponents may have

arbitrary prior beliefs about a real-valued parameter θ capturing the innovation’s value

1Maximin refers to maximizing the minimum expected payoff. The criterion is usually called minimax
in Statistics, referring to minimizing maximum expected loss.
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to the regulator. This result holds if the proponent’s payoff from approval is concave and

increasing in θ for a class of distributions of the trial’s outcome (which includes normal

and exponential distributions).

The model in this paper crudely resembles the regulatory approval of new drugs after

large Phase III clinical trials. I use the available aggregate data on the costs of clinical

trials and on the profitability of approved drugs to gauge what statistical test levels would

be sufficient to deter frivolous proponents in this domain. This level is around 15% for a

drug with average profits and a trial with average costs.

In this paper the proponents have an incentive to reveal some of their private infor-

mation about the innovation through their decision to invest in a costly trial. This leads

to non-degenerate approval decisions even if the regulator is infinitely pessimistic about

the pool of potential proposals. In contrast, both parties share the same ex ante be-

liefs about the innovation in the Bayesian persuasion model of Kamenica and Gentzkow

(2011), which studies the proponent’s choice of an optimal signal structure, and in the

sequential information acquisition model of Henry and Ottaviani (2015), which studies

different allocations of decision-making power between the two parties. Manski (2015)

advocates using randomized regulatory approval for deterring unwanted applications (as

well as for diversification and learning). In contrast to the present paper, randomization

of approval proposed by Manski does not depend on an informative statistical signal.

This paper does not consider a number of other incentive aspects involved in the

conduct of clinical trials and experiments that have been recently analyzed by economists.

Chassang et al. (2012) propose incentive mechanisms to disentangle the effects of the

treatment from the effects of effort exerted by trial participants to utilize the treatment.

Di Tillio et al. (2016) in a very simple model consider the effects of selective sampling or

selective reporting of trial results when such manipulation by the proponent is possible.

The paper proceeds as follows: in the next section, I discuss why the hypothesis

testing criterion has been difficult to rationalize using statistical decision theory. Section 2

outlines a simple environment that motivates hypothesis test rules as an optimal strategy

for a regulator with maximin utility. Section 3 adds the assumption that the data satisfies
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the monotone likelihood ratio property, under which decision procedures have a simple

threshold form. In this setting, I show that the decisions of a Bayesian regulator converge

to a simple hypothesis test rule as the regulator’s beliefs become more pessimistic about

the pool of potential proposals. Section 4 extends the problem to allow proponents of

innovations to be uncertain about their effectiveness prior to collecting the evidence.

Section 5 deals with strategic choice of the cost and precision of evidence. Section 6 uses

data on the costs of clinical trials and the profitability of approved drugs to gauge what

deterrent test levels may be appropriate for Phase III clinical trials.

1 Hypothesis testing is difficult to rationalize

Though widely used and intuitively appealing to many researchers, the classical hypoth-

esis testing criterion is difficult to motivate as a solution to an explicit decision problem.

The criterion is succinctly summarized by Lehmann and Romano (2005, p. 57): “It is

customary therefore to assign a bound to the probability of incorrectly rejecting H when

it is true and to attempt to minimize the other probability subject to this condition.”

When testing is used to choose between two alternative treatments, which is the focus of

this paper, the hypothesis testing criterion raises two questions. First, why is constraining

the maximum probability of Type I errors lexicographically more important than mini-

mizing the chance of Type II errors? While one type of errors could be more important

than the other, typical decision criteria call for weighted consideration of both, rather

than a constraint on just one type. Second, why only the probability of Type I errors is

considered and not their magnitude? It would seem that the probability of mistakenly

choosing the wrong treatment should be more important if there is a large difference in

the effectiveness of the two, and less important if they are almost equally effective. This

paper proposes an answer to both of these questions.

Statistical decision problems have been analyzed as games against nature starting

with Wald (1950) and Savage (1954). First, nature “chooses” an unknown parameter

value θ ∈ Θ. In this paper, θ will refer to the net effect of a new treatment, with the
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net effect of the status quo treatment normalized to zero. Then, statistical data X ∈ X

is randomly drawn from a probability distribution F (X; θ) that depends on θ. The

statistician then makes a decision δ(X), possibly randomized, based on observed data.

In case of hypothesis testing, the decision is binary: δ(X) = 1 if the alternative treatment

is accepted and δ(X) = 0 if the status quo is chosen. The performance of a decision rule

under each possible parameter value θ ∈ Θ could be summarized by the average loss

(1) EF (X;θ)[L(δ(X), θ)].

Usually, no decision rule minimizes the average loss simultaneously for all values of θ. The

choice of δ then depends on the criterion used to deal with the ambiguity regarding the

value of θ. The statistician could place a subjective prior distribution µ on Θ and minimize

subjective expected loss Eµ(θ)[EF (X;θ)[L(δ(X), θ)]]. Alternatively, the statistician could

look for a decision rule that performs uniformly well over Θ, for example, minimizing

supθ∈ΘEF (X;θ)[L(δ(X), θ)] (the maximin criterion). Stoye (2011) provides an extensive

overview of various uniform decision criteria and their axiomatic properties.

Discussions of hypothesis testing sometimes invoke a 1–K loss function that penalizes

all Type I errors by K points and all Type II errors by 1 point,

(2) L(δ, θ) = δ ·K · I(θ ∈ Θ0) + (1− δ) · I(θ /∈ Θ0).

Under some assumptions, one-sided hypothesis tests with size α = 1/(K + 1) coincide

with minimax decision rules under the 1–K loss. For example, tests with 5% significance

level minimize maximum 1–K loss that places 19 times more weight on a Type I error than

on a Type II error. However, loss function (2) does not provide a good rationalization for

the use of classical hypothesis testing criterion in treatment choice. First, while decision

rules that arise from minimax and Bayes criteria sometimes coincide with hypothesis test

rules, none of the criteria are equivalent to the lexicographic hypothesis testing criterion

found in statistics and econometrics textbooks. Second, the Type I/II error loss ratios

corresponding to typical test levels (K=19 for 5% and K=99 for 1%) seem too large for
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many problems. Furthermore, the 1–K loss function ignores the substantive magnitude of

committed errors, assigning the same penalty for mistakenly approving treatments that

are only infinitesimally worse as for ones that are greatly inferior.

A number of recent papers consider treatment choice as a statistical decision problem

using the regret loss function

(3) L(δ, θ) = δ · |θ| · I(θ < 0) + (1− δ) · |θ| · I(θ > 0),

which penalizes both Type I and Type II errors proportionately to the magnitude of the

treatment effect |θ|. The optimal decision rules under both minimax and average risk (flat

prior) decision criteria are essentially empirical success rules (Manski, 2004, 2005) that

prescribe choosing the treatment that appears to be more successful in trials, whether by

a small or by a wide margin (see also Schlag, 2007; Hirano and Porter, 2009; Stoye, 2009).

These decision rules are comparable to one-sided 50% hypothesis tests, rather than to

the conventional 5% or 1% tests.

The regret loss function (3) could be modified to place asymmetric weight on Type I

and Type II errors of the same magnitude:

(4) L(δ, θ) = δ ·K · |θ| · I(θ < 0) + (1− δ) · |θ| · I(θ > 0).

Minimax and average risk decision rules with this asymmetric loss function bear similarity

to hypothesis test rules because innovations are approved when the estimate of θ exceeds

some multiple of its standard error (Hirano and Porter, 2009; Tetenov, 2012). However,

to obtain decision rules comparable to tests at conventional levels, the asymmetry factor

K has to be much greater than with the 1-K loss function (2). The difference is due

to the interaction between the magnitude of errors and their probability. One-sided 5%

tests are minimax optimal for K=102, while 1% tests are optimal for K=970 (Tetenov,

2012). In contrast, a moderate loss aversion coefficient of K=3 would lead to a one-sided

34% test. While loss aversion may seem like a plausible explanation for the asymmetry

of conventional hypothesis tests, it cannot easily rationalize conventional test levels or

7



the hypothesis testing criterion itself.

2 Screening proponents through hypothesis testing

This section describes a regulatory approval game from which the classical hypothesis

testing criterion (with problem-specific significance levels) emerges as an optimal strategy

for a regulator with maximin utility playing against a perfectly informed proponent. This

result does not require any restrictions on the family of distributions generating the trial

data. Further sections impose the monotone likelihood ratio property, which allows for a

richer theoretical analysis at the expense of statistical generality.

There are two parties in the game: the proponent of an innovation and the regulator.

The regulator has to decide whether to accept or reject the proposed innovation based

on costly statistical evidence produced by the proponent. The quality of the proponent’s

innovation, which determines the parties’ payoffs, is θ ∈ Θ. The proponent knows θ,

while the regulator does not (section 4 extends the findings to the case in which the

proponent is uncertain about the value of θ). Monetary transfers between the parties are

not possible.

If the regulator accepts the innovation, the proponent gets a payoff of b(θ) and the

regulator gets a payoff of v(θ). The payoffs to both parties are zero if the regulator rejects

the innovation. The function b(θ) is known to the regulator. When the proponent knows

θ with certainty, we could assume that b(θ) ≥ 0 for all θ ∈ Θ, since for other proponents

participation is certainly unprofitable. I assume throughout the paper that both parties

are risk-neutral with respect to objectively known probabilities.

Let Θ0 ≡ {θ : v(θ) < 0} denote the set of innovations that are detrimental for the

regulator (the null hypothesis) and let Θ1 ≡ {θ : v(θ) ≥ 0} be the set of innovations

valuable for the regulator (the alternative hypothesis).

To convince the regulator that θ ∈ Θ1, the proponent could conduct a trial of the

innovation that costs c > 0 and generates a sufficient statistic X ∈ X with probability

distribution F (X; θ). The conditional data generating process F (X; θ) is known to both
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parties. The trial cannot be manipulated by the proponent and only its full results could

be provided to the regulator. The full trial cost c is sunk before any data is realized and

c is observed by the regulator. The regulator commits to using a statistical decision rule

δ : X → [0, 1], where δ(X) denotes the probability with which the regulator will accept

the innovation if the outcome of the trial equals X.

To summarize, the timing of the game is as follows. The regulator commits to an

approval decision rule δ as a function of the trial statistic X (and of the publicly known

characteristics b(θ) and c of the proponent). The proponent, knowing his type θ, chooses

whether to invest c in collecting the data. If the proponent chooses to conduct the trial,

nature draws X according to the distribution F (X; θ). The proponent chooses whether

to request approval and the regulator grants it with probability δ(X). The parties’ final

payoffs are (b(θ)− c, v(θ)) if the proponent conducts a trial and the regulator approves,

(−c, 0) if the proponent conducts a trial and the regulator does not approve, and (0, 0)

otherwise.

The ex ante probability that an innovation with parameter θ will be accepted following

the trial equals

(5) βδ(θ) ≡
∫
X
δ(X)dF (X; θ).

In statistical terminology, βδ(θ) is the test’s “power function,” since δ(X) = 1 denotes

rejection of the null hypothesis by the regulator. It is optimal for a risk-neutral proponent

to invest in a trial if its expected payoff is positive, that is, if βδ(θ) > c/b(θ). Proponents

of type θ who face approval probability βδ(θ) < c/b(θ) are deterred by the regulator’s

statistical decision rule from conducting a trial. Proponents could make either decision

if βδ(θ) = c/b(θ). To simplify exposition, I assume that indifferent proponents invest in

a trial, but this is not significant for the paper’s analysis.

Since the regulator moves first and commits, her choice of a statistical decision rule δ

could be analyzed as a single agent decision problem, taking into account the proponent’s

best response to δ. The regulator’s expected payoff when facing a proponent of type θ
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equals

(6) V (δ, θ) ≡

 v(θ)βδ(θ) if βδ(θ) ≥ c/b(θ),

0 if βδ(θ) < c/b(θ).

To achieve the maximum feasible payoff of zero for θ such that v(θ) < 0, it is sufficient for

the regulator to pick any decision rule with βδ(θ) < c/b(θ). To achieve the same objective

in a game against nature (in which the decision to generate the trial data is not strategic),

the regulator would have to pick a decision rule with βδ(θ) = 0. Only degenerate decision

rules that reject innovations for all realizations of the data are maximin in a game against

nature, which led Manski (2004) to question the usefulness of the maximin decision

criterion. In contrast, strategic entry decision by the proponent allows the regulator to

employ non-degenerate decision rules even under the pessimistic maximin criterion.

The following proposition characterizes optimal strategies for a regulator with max-

imin preferences.

Proposition 1. Decision rule δ∗ is maximin-optimal for the regulator, i.e.,

δ∗ ∈ arg max
δ

min
θ
V (δ, θ)

if and only if

(7) βδ∗(θ) <
c

b(θ)
for all θ ∈ Θ0.

Proof. The maximin payoff for the regulator cannot be greater than zero, since zero is the

highest possible payoff for θ ∈ Θ0. Then the maximin payoff has to equal zero, because

a degenerate decision rule δ0(x) = 0 ∀x ∈ X , which always rejects the innovation, yields

the regulator a payoff of zero playing against any proponent type.

If δ∗ satisfies (7), then the regulator’s payoff equals zero for all θ ∈ Θ0 by (6). The

regulator’s payoff is always non-negative for θ ∈ Θ1, hence δ∗ is maximin.

If δ∗ does not satisfy (7), then βδ∗(θ̃) ≥ c/b(θ̃) for some θ̃ ∈ Θ0 and the regulator’s
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expected payoff equals v(θ̃)βδ∗(θ̃) < 0, hence δ∗ is not maximin.

If the proponent’s payoff does not depend on θ (i.e., b(θ) = b), then condition (7) in

Proposition 1 simplifies to the standard condition for controlling the level of a hypothesis

test:

(8) βδ∗(θ) <
c

b
for all θ ∈ Θ0,

with the requisite test level determined by the economic parameters b and c.

There are generally many alternative maximin decision rules, including the degenerate

rule δ0(x) = 0. Some of these rules could be inadmissible (weakly or strongly dominated

by other decision rules). More structure needs to be placed on the data distribution

F (X; θ) to determine which decision rules are admissible. Further sections impose the

monotone likelihood ratio property on F , which yields a very strong characterization of

admissible decision rules.

Maximin is a conservative decision criterion for choice under ambiguity. In this case,

the regulator’s ambiguity about the distribution of θ among potential proponents. The

next section compares maximin decision rules to optimal decision rules for regulators who

do not face ambiguity and could place a subjective prior distribution on the potential

proponent type θ. I show that the maximin decision rule could be seen as a limit case

when the prior probability of the null hypothesis (θ ∈ Θ0) converges to one.

Maximin decision rules are optimal (or nearly optimal) if the regulator believes that

the supply of inferior innovations (proponents with θ ∈ Θ0) is almost bottomless com-

pared to the supply of valuable ones. In many contexts, a large number of potential

proposals with v(θ) < 0 could be generated almost effortlessly and ultra-pessimistic be-

liefs are reasonable. The relevant distribution of proponent types is the distribution of

potential proponents, which is difficult to observe in practice. If some deterrent policy is

already in place (which is the case in all fields using some form of hypothesis testing), the

distribution of deterred proponents is completely hidden from the view of the regulator.

This makes it impossible for the regulator to base her beliefs about the distribution of
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potential proponent types on empirical evidence and provides an additional reason to

consider robust decision criteria like maximin.

3 Proponents with precise knowledge of θ

To better understand the properties of hypothesis testing, in this section I place additional

structure on the payoffs and on the statistical properties of the data-generating process.

Assumption P1 (payoffs).

The quality of an innovation is indexed by a real-valued parameter θ ∈ Θ ⊆ R and

Θ = (θl; θu), −∞ ≤ θl < 0, 0 < θu ≤ ∞. θ fully captures the innovation’s value to the

regulator: v(θ) = θ. The proponent’s benefit from an acceptance decision b(θ) > 0 is a

continuous, non-decreasing function of θ.

Assumption S1 (data).

There is a continuously distributed sufficient statistic X ∈ X ⊆ R of the trial data with

density f(x; θ) > 0 and c.d.f. F (x; θ) = Pθ(X ≤ x). As a function of θ, F (x; θ) is

continuously differentiable and strictly decreasing for all x ∈ X . f(x; θ) possesses the

Monotone Likelihood Ratio property:

(9) x1 > x2, θ1 > θ2 ⇒
f(x1; θ1)

f(x1; θ2)
≥ f(x2; θ1)

f(x2; θ2)
.

f(x; θ) is bounded for each θ, and limθ′→θ
∫
X |f(x, θ′)− f(x, θ)|dx = 0 for all θ ∈ Θ.

A normally distributed statistic X ∼ N (θ, σ2) with a fixed variance σ2 and F (x; θ) =

Φ ((x− θ)/σ) is a leading example satisfying Assumption S1.

Under assumptions P1 and S1, it is sufficient for the regulator to consider monotone

(threshold) decision rules2:

(10) δT (X) ≡ I[X ≥ T ], T ∈ R.
2The class of monotone decision rules also allows for randomization at the threshold value T , but it

is not necessary to consider it here for continuously distributed X.
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Lemma 3 in Karlin and Rubin (1956) establishes that for any decision rule δ : X → [0, 1]

there exists a unique monotone decision rule δT that yields higher approval probability

for all good innovations and lower approval probability for bad ones,

(11)
βδT (θ) ≤ βδ(θ) for all θ ≤ 0 and

βδT (θ) ≥ βδ(θ) for all θ ≥ 0.

The proponent’s decision to conduct a trial is then higher under δT for positive θ and

lower for negative θ,

(12)
I [βδT (θ) · b(θ) ≥ c] ≤ I [βδ(θ) · b(θ) ≥ c] for all θ ≤ 0 and

I [βδT (θ) · b(θ) ≥ c] ≥ I [βδ(θ) · b(θ) ≥ c] for all θ ≥ 0.

The regulator’s payoff (6) from the threshold decision rule δT is therefore at least as great

as the payoff from δ for all θ.

The acceptance probability βδT (θ) = 1−F (T ; θ) of a monotone decision rule is contin-

uously decreasing in the threshold T for every θ. There exists, then, a monotone decision

rule

(13)
δ∗ ≡ I[X ≥ T ∗],

T ∗ ≡ F−1

(
1− c

b(0)
; 0

)
,

whose acceptance probability at θ = 0 equals

(14) βδ∗(0) =
c

b(0)
.

The threshold T ∗ is unique because the c.d.f. F (x; 0) is strictly increasing in x. This

decision rule is the same as a one-sided hypothesis test of H0 : θ ≤ 0 with size c/b(0).

For the normal case X ∼ N (θ, σ2),

(15) δ∗(X) = I

[
X ≥ σΦ−1

(
1− c

b (0)

)]
.
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Under decision rule δ∗, all innovations with θ < 0 face acceptance probability that is

too low to make trials profitable for their proponents, whereas the acceptance probability

for innovations with θ > 0 is sufficiently high. The following proposition shows that δ∗ is

a maximin and admissible decision rule for the regulator. Monotone decision rules with

higher acceptance probability at θ = 0 are not maximin because they make it profitable

for proponents with some θ < 0 to conduct trials and the regulator faces a negative

expected payoff against this type of proponents. Decision rules with lower acceptance

probability at θ = 0 are also maximin, but they are inadmissible because they yield the

same payoff as δ∗ for θ ≤ 0, but lower payoff than δ∗ for θ > 0.

Proposition 2. Monotone decision rule δ∗ satisfying (14) is a maximin and admissible

decision rule for the regulator under assumptions P1 and S1.

Proof. The maximin payoff for the regulator equals zero. It cannot be lower because

degenerate decision rule δ0(x) = 0 yields V (δ0, θ) = 0 for all θ. It cannot be higher

because V (δ, θ) ≤ 0 for any δ and any θ < 0.

When the regulator commits to decision rule δ∗, it is not optimal for potential propo-

nents with θ < 0 to conduct trials because

(16) βδ∗(θ)b(θ) < βδ∗(0)b(0) = c.

This inequality follows from strict monotonicity of βδ∗(θ) and weak monotonicity of b(θ).

The regulator’s payoff under δ∗ from facing proponents with θ < 0 then equals the

maximin value of zero. For proponents with θ ≥ 0, the regulator’s payoff is nonnegative

for any decision rule, hence δ∗ is maximin.

Decision rule δ∗ is admissible if there exists no decision rule δ′ that yields the regulator

a strictly higher payoff for at least one value of θ and weakly higher payoffs for all values

of θ. If any decision rule dominates δ∗, there must also be a monotone decision rule δ′

that dominates δ∗.

If βδ′(0)b(0) > c, then βδ′(θ̃)b(θ̃) > c for some θ̃ < 0 because βδ′(θ) is continuous

in θ (since |βδ′(θ′) − βδ′(θ)| ≤
∫
|f(x, θ′) − f(x, θ)|dx → 0 for θ′ → θ). This makes it
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profitable for proponents of type θ̃ to invest in trials. The regulator’s expected payoff is

then negative at θ̃, hence δ′ cannot dominate δ∗.

If βδ′(0)b(0) < c, then βδ′(θ̃)b(θ̃) < c for some θ̃ > 0, hence it is unprofitable for

proponents of type θ̃ to conduct trials and the regulator’s expected payoff at θ̃ is zero.

Under δ∗, instead, it is profitable for proponents with θ̃ > 0 to conduct trials, yielding a

strictly positive expected payoff V (δ∗, θ̃) > 0 to the regulator. Thus δ′ cannot dominate

δ∗.

3.1 Decision rules for Bayesian regulators

I show below how hypothesis test rules with test level c/b(0) relate to decision rules that

are optimal for a Bayesian regulator who has a subjective prior distribution over the types

of potential proponents. The first finding is that the test with level c/b(0) always sets a

higher threshold of evidence than a Bayesian regulator. Second, this test rule is a limit of

decision rules adopted by Bayesian regulators who assume higher and higher proportion

of potential proponents with inferior innovations.

Let Q(θ) denote the regulator’s prior distribution over the potential proponent’s type

θ ∈ Θ ⊆ R. For simplicity, assume that Q is continuous and its density function is q(θ).

The regulator’s expected payoff from using decision rule δ then equals

(17) VQ(δ) ≡
∫

Θ

V (δ, θ)dQ(θ) =

∫
Θ

θβδ(θ) · I [βδ(θ)b(θ) ≥ c] dQ(θ).

It is sufficient to consider maximizing (17) over the set of threshold decision rules (10).

Since βδT (θ)b(θ) is increasing in θ, the subset of Θ on which βδT (θ)b(θ) ≥ c is an interval

[θ̄ (T ) , θu), where θ̄(T ) is the proponent’s participation threshold. The regulator faces a

one-dimensional problem of finding the threshold of the optimal decision rule

(18)

δQ ≡ I[X ≥ TQ],

TQ ≡ arg max
T

VQ(δT ) = arg max
T

∫ θu

θ̄(T )

θβδT (θ)dQ(θ).

Proposition 3 shows that it is optimal for a Bayesian regulator to set the evidence
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threshold TQ lower than for the hypothesis test (13). While some proponents with inferior

innovations (θ < 0) will then find it optimal to conduct trials and will gain approval with

a positive probability, the loss from approving them is offset by a higher probability of

approving valuable innovations (θ > 0).

Proposition 3. If Assumptions P1 and S1 hold, the regulator’s prior Q places a positive

probability Q(θ > 0) > 0 on good potential proposals and has a bounded density q(θ) ≤ q̄,

then the optimal decision rule (18) has a lower threshold than the hypothesis test rule

(13): TQ < T ∗.

Proof. The hypothesis test threshold T ∗ is constructed so that βδT∗ (0)b (0) = c, therefore

θ̄(T ∗) = 0 (only proponents with θ ≥ 0 find it profitable to conduct a trial). The

participation threshold θ̄(T ) is an increasing differentiable function of T by the implicit

function theorem.

The regulator’s optimal decision rule cannot have TQ > T ∗ because for any T > T ∗,

VQ(δT ) =

∫ θu

θ̄(T )

θβδT (θ)dQ(θ) ≤
∫ θu

0

θβδT (θ)dQ(θ) <

∫ θu

0

θβδT∗ (θ)dQ(θ) = VQ(δT ∗),

since θβδT ≥ 0 for θ ≥ 0 and βδT (θ) is strictly decreasing in T for all θ.

For T < T ∗, the regulator’s expected payoff equals

(19) VQ(δT ) =

∫ 0

θ̄(T )

θβδT (θ)dQ(θ) +

∫ θu

0

θβδT (θ)dQ(θ).

The first term in (19) is negative and is bounded by

∣∣∣∣∫ 0

θ̄(T )

θβδT (θ)q(θ)dθ

∣∣∣∣ ≤ q̄

∣∣∣∣∫ 0

θ̄(T )

θdθ

∣∣∣∣ = q̄
(θ̄(T ))2

2

because βδT ∈ [0, 1] and q(θ) ∈ [0, q̄]. It follows that the derivative of the first term of

(19) (the effect on losses from approving inferior innovations) with respect to θ̄(T ) at

θ̄(T ) = θ̄(T ∗) = 0 equals zero. Since θ̄(T ) is differentiable in T ,

d

dT

∫ 0

θ̄(T )

θβδT (θ)dQ(θ)

∣∣∣∣
T=T ∗

= 0.
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On the other hand, since βδT (θ) is strictly decreasing in T and Q places a positive measure

on θ > 0, the derivative of the second term is strictly negative

d

dT

∫ θu

0

θβδT (θ)dQ(θ) =

∫ θu

0

θ
dβδT (θ)

dT
dQ(θ) < 0,

hence the threshold TQ maximizing VQ(δT ) is smaller than T ∗.

The next proposition shows that the hypothesis test rule with level c/b(0) could

be interpreted as an approximation of Bayesian decision rules that would be taken by

regulators sufficiently pessimistic about the pool of potential proponents seeking approval

for their innovations. If the regulator places higher and higher prior probability on θ < 0,

the threshold of the optimal decision rule converges to the hypothesis test threshold T ∗.

Proposition 4. Let assumptions P1 and S1 hold. Let Q be a probability measure with

density q(θ) and a finite mean. Assume that Q((0, θu)) > 0 and q(θ) > 0 on the interval

[−ε, 0] for some ε > 0. Let {an} be an increasing sequence of numbers an ∈ (0, 1),

an → 1, denoting the prior weight on θ < 0. Define a sequence of probability measures

Qn with densities

qn(θ) ≡
(
anI[θ < 0]

Q ((θl, 0))
+

(1− an)I[θ ≥ 0]

Q ([0, θu))

)
q(θ)

and a sequence of decision rule thresholds Tn ≡ arg maxT VQn(δT ) that are optimal for

regulators with priors Qn. Then Tn → T ∗.

Proof. It follows from Proposition 3 that Tn < T ∗ for all n. Fix any T̄ < T ∗. For any δT

with T ≤ T̄ ,

(20)

VQn(δT ) =

∫ 0

θ̄(T )

θβδT (θ)qn(θ)dθ +

∫ θu

0

θβδT (θ)qn(θ)dθ

=
an

Q((θl, 0))

∫ 0

θ̄(T )

θβδT (θ)q(θ)dθ +
1− an

Q([0, θu))

∫ θu

0

θβδT (θ)q(θ)dθ

≤ an
Q((θl, 0))

∫ 0

θ̄(T̄ )

θβδT (θ)q(θ)dθ +
1− an

Q([0, θu))

∫ θu

0

θβδT (θ)q(θ)dθ

≤ an
Q((θl, 0))

∫ 0

θ̄(T̄ )

θβδT̄ (θ)q(θ)dθ +
1− an

Q([0, θu))

∫ θu

0

θq(θ)dθ.
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The first inequality holds because the first integrand is negative over θ < 0 and the

participation threshold θ̄(T ) is increasing in T . The second inequality applies because

βδT̄ (θ) ≤ βδT (θ) ≤ 1.

The first integral in (20) is strictly negative because q(θ) > 0 on [−ε, 0]. The second

integral is positive and finite because Q has a finite mean. Their weighted sum is negative

for sufficiently large n because an → 1. Hence, for sufficiently large n, VQn(δT ) < 0 ≤

VQn(δT ∗) for every T ≤ T̄ , implying that Tn > T̄ . Since this is true for any T̄ < T ∗, it

follows that Tn → T ∗.

4 Proponents imperfectly informed about the value

of their innovations

Proponents may have some information about the value of their innovations, but not

enough to know θ with certainty, as the paper assumed thus far. In this section, I show

that hypothesis tests with level c/b(0) are still maximin and admissible for the regulator

if the proponent’s payoff function b(θ) is concave. The proponent’s type in this case will

be denoted by π - the probability distribution that the proponent places on the quality

θ of his innovation prior to conducting a trial. The proponent’s beliefs about θ may

be based on any evidence collected by the proponent before the trial. It is important,

though, that this evidence should be uninformative about the distribution of the trial

outcome P (X|θ), except through the proponent’s beliefs about θ. The proponent’s type

π could be any probability distribution on Θ ⊂ R with a finite mean. Denote the set

of all such distributions by ∆ and the subset of degenerate distributions, representing

certainty about θ, by ∆0.

The regulator needs to take into account that proponents may not want to seek

approval for their innovations upon observing the outcome X of the trial. This happens if

the proponent’s posterior π(θ|X) is sufficiently negative. Denote the proponent’s optimal

decision on whether to seek approval upon observing the trial outcome by the function3

3I assume for simplicity that the proponent chooses to seek approval if he is indifferent. Modifying
this assumption does not affect the results.
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ηπ(X) ≡ I
[∫

Θ
b(θ)dπ(θ|X) ≥ 0

]
. When the regulator commits to a decision rule δ, the

proponent’s expected probability of approval prior to conducting the trial equals

(21) βδ,π(θ) ≡
∫
X
δ(X)ηπ(X)dF (X; θ).

It is profitable for the proponent to conduct a trial if

(22)

∫
Θ

b(θ)βδ,π(θ)dπ(θ)− c ≥ 0.

Since βδ,π(θ) is nonlinear in θ, the proponent’s payoff depends in a nontrivial fashion on

his prior π and a closed-form solution to the proponent’s decision problem seems unlikely.

Threshold hypothesis test rule (13) with test level c/b(0) remains maximin and ad-

missible for the regulator in this setting with the following additional assumptions on the

proponent’s payoff function and on the distribution F (X; θ).

Assumption P2 (payoffs).

The proponent’s payoff b(θ) is a continuous, non-decreasing, weakly concave function of

θ. It may take negative values, but b(0) > 0.

Assumption S2 (data).

The ratio
(
−dF (T ;θ)

dθ

) /
(1− F (T ; θ)) is non-increasing in θ for all T ∈ R.

Examples of distributions that satisfy Assumptions S1 and S2 include the family of

normal distributions X ∼ N (θ, σ2) with known variance σ2 and the family of exponential

distributions with means µ0 + θ, where µ0 is known.

The following proposition shows that conducting the trial is only optimal for pro-

ponents with beliefs π for which the regulator’s expected payoff, evaluated using the

proponent’s beliefs π, is non-negative.

Proposition 5. Suppose that Assumptions P1, P2, S1 and S2 hold, and that the regulator

commits to the hypothesis test rule δ∗ in (13). If the proponent’s beliefs π imply a negative
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expected payoff to the regulator following the trial, that is, if

(23)

∫
Θ

θβδ∗,π(θ)dπ(θ) < 0,

then it is unprofitable for a proponent of type π to conduct the trial,

(24)

∫
Θ

b(θ)βδ∗,π(θ)dπ(θ)− c < 0.

Proof. See Appendix.

It follows from Proposition 5 that the regulator faces a non-negative expected payoff

from any potential proponent type π, hence the test rule δ∗ is maximin for the regulator.

The following proposition also establishes that the hypothesis test rule δ∗ is admissible.

Proposition 6. Under Assumptions P1, P2, S1 and S2, the hypothesis test rule δ∗ in

(13) is maximin and admissible for the regulator with respect to π ∈ ∆.

Proof. For δ∗ to be inadmissible, there must be a different monotone decision rule δ that

yields strictly higher payoff to the regulator for some type π and does not yield lower

payoff for any type π. Any other monotone decision rule δ 6= δ∗ either has lower power

βδ(θ̄) < βδ∗(θ̄) for all θ̄ > 0 or higher size βδ(0) > βδ∗(0) = c/b(0) by the Neyman-Pearson

lemma. In the first case, it yields the regulator a lower payoff than δ∗ for any π ∈ ∆0

that places probability one on some θ̄ > 0. In the second case, the regulator’s payoff is

negative for proponent types that place probability one on some θ̄ < 0 sufficiently close

to zero.

It follows from Proposition 5 that the regulator’s payoff from δ∗ is non-negative for

any π ∈ ∆. No decision rule could yield a higher minimum, since all decision rules yield

payoff of zero for π0 that places probability π0(θ = 0) = 1, hence δ∗ is maximin.

One-sided hypothesis test rules with level c/b(0) are attractive if the regulator cannot

place more precise restrictions on the distribution of potential proponent types, at least

if the proponent’s benefit from approval b(θ) is concave in θ.
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The results of Propositions 5 and 6 do not hold if the proponent’s benefit b(θ) is not

concave. The following example illustrates that proponents with non-concave b(θ) may

find it profitable to test innovations that yield a negative payoff to the regulator. It may

be possible, however, to deter all undesirable proponents with a test rule stricter than δ∗.

Example 7. Suppose that b(−1) = 0.1, b(0) = 1, and b(1) = 10, thus b(θ) is not concave.

Let X be normally distributed with F (x; θ) = Φ(x−θ) and let c = 1/2. The hypothesis test

rule (13) must have size 1/2 and equals δ∗(X) = I[X ≥ 0]. The probability of approval

as a function of θ equals βδ∗(θ) = 1− F (0; θ) = 1− Φ(−θ) = Φ(θ).

If the proponent’s prior beliefs place probabilities π(θ = −1) = 0.9 and π(θ = 1) = 0.1,

then the expected payoff to the regulator is negative if the trial is conducted,

∑
θ∈{−1,1}

θβδ∗(θ)π(θ) = −1 · Φ(−1) · 0.9 + 1 · Φ(1) · 0.1 ≈ −0.059.

However, conducting the trial is profitable for the proponent, whose expected payoff is

∑
θ∈{−1,1}

b(θ)βδ∗(θ)π(θ)− c = 0.1 · Φ(−1) · 0.9 + 10 · Φ(1) · 0.1− 0.5 ≈ 0.356.

5 Endogenous choice of testing cost and precision

So far, the cost c of conducting the trial and the data distribution F (X; θ) (e.g., the

sample size) were treated as exogenous for both parties and were not determined within

the game. If proponents could freely choose c and F , hypothesis test rules with the

proposed level c/b(0) remain an effective deterrent for proponents with θ < 0, as long

as the test level is based on their chosen trial cost and data distribution. However, it

may be optimal for the regulator to make the test stricter for some choices of (c, F ) in

order to induce the proponent to choose another trial design (c′, F ′) that would yield a

higher expected payoff to the regulator. The regulator’s concerns when all proponents

are perfectly informed about θ are different from the case when proponents may be

imperfectly informed.

If all proponents are ex ante certain about the value of θ and could choose how much to
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spend on conducting the trial, the regulator would prefer to push them towards choosing

c = b(0). This effectively replaces statistical signaling with pure monetary signaling of

the proponent’s type.

Example 8. Suppose that π ∈ ∆0 and b(θ) is strictly increasing in θ. Let δ∗(X; c, F ) be

a test rule that satisfies condition (7) for each choice of (c, F ). If the proponent’s choice

set of (c, F ) includes at least one choice with c = b(0), then the decision rule

δ(X; c, F ) = I[c = b(0)]

dominates δ∗. All proponents with θ > 0 still find it profitable to conduct trials and the

approval rate for them equals 1, which yields the highest possible payoff for the regulator.

On the other hand, conducting the trial remains unprofitable for all proponents with θ < 0

because b(θ) < c = b(0).

Even if b(θ) is not strictly increasing, but F (X; θ) has the MLR property, the regulator

could achieve almost the same effect by using decision rules that depend only slightly

on the statistical signal. Suppose that (c∗, F ∗) is a trial design with c∗ < b(0) and

δ∗(X; c∗, F ∗) satisfies (13). If trial designs (c′, F ∗) with the same statistical signal and

higher costs c′ ∈ (c∗, b(0)) are also available, then consider decision rules

(25)
δc′(X; c, F ) =

c′ − c∗

b(0)− c∗
+
b(0)− c′

b(0)− c∗
δ∗(X; c∗, F ∗) if (c, F ) = (c′, F ∗),

δc′(X; c, F ) = 0 if (c, F ) 6= (c′, F ∗).

For all θ < 0, the approval rate under δc′ is strictly lower than

c′ − c∗

b(0)− c∗
+
b(0)− c′

b(0)− c∗
βδ∗(·;c∗,F ∗)(0) <

c′ − c∗

b(0)− c∗
+
b(0)− c′

b(0)− c∗
· c

∗

b(0)
=

c′

b(0)
,

which makes the trial unprofitable for proponents with θ < 0. But for all θ > 0 the

approval rate under δc′ converges to 1 as c′ → b(0).

If proponents are not perfectly informed about θ and could choose trial design (c, F ),

the result of Proposition 5 still holds, hence δ∗(X; c, F ) is a maximin decision rule if b(θ)
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is concave. It is less clear whether it is admissible, i.e., whether there may be a decision

rule that dominates the hypothesis test rule δ∗(X; c, F ) when the proponent could choose

the trial design.

The regulator’s incentives to demand costlier trials (which yield higher approval rates

for θ > 0) are offset by the risk of making trials too costly for imperfectly informed

proponents that the regulator would prefer to conduct trials. The following proposition

illustrates this intuition in a setting where the data is normally distributed and proponents

could choose between two trial designs, one of which yields more precise evidence at a

higher cost. In this setting, there is no decision rule that dominates letting the proponent

choose the trial design and then applying test rule (15) to the data.

Proposition 9. Suppose that X ∼ N (θ, σ2), i.e. Fσ(x; θ) ≡ Φ((x − θ)/σ), π ∈ ∆ and

b (θ) = b for all θ. If the proponent could choose between two trial designs (c1, σ1) and

(c2, σ2) with b/2 > c1 > c2 and σ1 < σ2, then the decision rule

(26) δ∗ (X; ci, σi) = I
[
X > σiΦ

−1(ci/b)
]

is admissible.

Proof. See Appendix.

6 Statistical Testing for Drug Approval

The approval of new drugs after Phase III clinical trials has many similarities to the

environment of this paper. This section gauges what test levels could result from applying

this paper’s analysis to drug approval. Phase III trials are large-sample double-blind trials

in which the proposed drug is compared to a placebo or an existing treatment. They

are the last stage of trials before the regulator reviews a drug for approval and statistical

hypothesis testing of the drug’s effectiveness is an important part of the approval decision.

The costs of the trials are borne by the companies and now constitute 36% of their R&D

expenses (PhRMA, 2013). Deterrence of frivolous proposals should be a serious concern
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because the pool of new compounds that pharmaceutical companies could potentially

propose is very large, with 5,000–10,000 compounds entering the R&D pipeline per each

approved drug (PhRMA, 2013).

If approval is based on a one-sided hypothesis test against the status quo treatment,

then this paper suggests that its significance level should be c/b(0). The trial cost c, in

this case, is the present value of sunk costs of the Phase III clinical trial. The benefit

b(0) is the present value of the expected profit from the regulatory approval of the drug

if the drug’s true treatment effect is zero. Both parameters vary a lot from drug to drug

(Grabowski et al., 2002; DiMasi et al., 2003), but the relevant data for individual drugs

are not readily available.

I derive the deterrent test level for a “representative drug” with average Phase III

clinical trial costs c and expected profits b(0) equal to the average profits of approved

drugs. This overestimates b(0) if approved drugs have positive effects and hence profits

higher than b(0). Given the simplicity of the formula, it is very easy to see how this test

level varies depending on the values of clinical trial costs and expected profits.

The estimate of c comes from R&D cost estimates of DiMasi et al. (2003), who

collected detailed confidential cost data from pharmaceutical firms for a sample of drugs

first tested in 1983–1994. They report $119.2 million (in 2000 dollars) as the average

cost of a Phase III clinical trial, including trials that did not lead to approval. The trial

costs are spread over an average of 30.5 months and the estimate discounts the costs at

11% rate to the time of approval (estimated to be 18.2 months after the end of Phase III

trials). The rate of 11% is the real cost of capital estimated by DiMasi et al. (2003) for

the pharmaceutical industry during the study’s time period.

I use average pre-approval R&D costs divided by the number of approved drugs to

estimate the average profits of approved drugs. These should be equal if firms face zero

expected profits. DiMasi et al. (2003) estimate the average R&D costs to be $802 million

(in 2000 dollars). This estimate discounts the costs of preclinical research and all stages

of clinical trials to the time of drug approval. It includes the costs of developing drug

candidates that were abandoned or were not approved. Grabowski et al. (2002) collected
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sales data for drugs analyzed by DiMasi et al. (2003) that were introduced in 1990–1994.

They estimate the difference between the average present value of profits from future

sales and the average present value of R&D costs for these drugs to be less than 10%.

Combining these estimates yields the deterrent level for testing a “representative drug”

equal to

(27) α =
$119.2 million

$802 million
= 14.9%.

Both the distribution of sales and the distribution of clinical trial costs are very dispersed,

so this is a point from a large range of deterrent test levels For example, Grabowski et al.

(2002) report that sales of drugs in the top decile of the distribution are almost 5.5 times

higher than the mean. The deterrent test level for an average top-decile drug with average

clinical trial costs would then be 2.7%.

These estimates pertain to a very simplified scenario in which drug approval depends

on results of a single hypothesis test of the drug’s overall treatment effect. The tested

treatment effect ought to capture all the relevant dimensions of patient outcomes, includ-

ing side effects, inconveniences, and cost differences. The actual drug approval process

is more complex. If it were a matter of such a single test, though, the estimates above

suggest that conventional test levels of 5% and 1% would be too strict in some cases.

Higher test levels could still offer sufficient deterrence against all frivolous applications

and increase the chance of approval for effective drugs.

7 Conclusion

The paper presented a new theory for the use of hypothesis test rules in regulatory

approval and for choosing the levels of these tests. The probability of Type I errors

for innovations with negative effects has to be contained to deter potential proponents

from flooding the regulator with bad proposals. The proposed test level is determined by

the ratio of the proponent’s testing costs over his expected benefits from the proposal’s

approval by the regulator. In this setting, hypothesis test rules turn out to be admissible
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and maximin decision rules for the regulator with respect to the proponent’s ex ante

beliefs about the quality of the innovation. They can also be seen as a limit of test rules

adopted by Bayesian regulators who are sufficiently pessimistic about the proportion of

frivolous proposals. This paper illustrates that some statistical inference procedures are,

in effect, policy tools and should take into account their incentive effects.

26



Appendix

Proof of Proposition 5. The proponent’s decision rule for requesting approval follow-

ing a trial always has the threshold form ηπ(X) = I [X ≥ TP ] , TP ≥ −∞, due to the MLR

property of F (X; θ). Then the joint decision rule (probability that both the regulator

and the proponent want to approve the innovation upon observing X) is also a threshold

function of X,

δ̃(X) ≡ δ∗(X)ηπ(X) = I [X ≥ max(T ∗, TP )] ,

equivalent to the outcome of a one-sided hypothesis test rule with threshold T̃ = max(T ∗, TP ),

which is a test with size βδ̃(0) = c̃/b(0) for some value c̃ ≤ c, and acceptance probability

βδ̃(θ) = βδ∗,π(θ).

The weakly concave function b(θ) can be bounded above by a linear function

b̃(θ) ≡ b(0) + γθ ≥ b(θ).

passing through b(0). Since b(θ) is non-decreasing, γ ≥ 0.

The proponent’s expected payoff from conducting a trial then equals

(A1)

∫
Θ

b(θ)βδ̃(θ)dπ(θ)− c = (c̃− c) +

∫
Θ

[b(θ)βδ̃(θ)− c̃]dπ(θ) ≤

≤ (c̃− c) +

∫
Θ

[b̃(θ)βδ̃(θ)− c̃]dπ(θ).

The integrand [b̃(θ)βδ̃(θ)− c̃] equals zero at θ = 0, is positive for θ > 0 and negative for

θ < 0. The same is true for θβδ̃(θ), hence the ratio

r (θ) ≡ b̃(θ)βδ̃ (θ)− c̃
θβδ̃ (θ)

is positive for all θ 6= 0. While it is undefined at θ = 0, it has a well-defined limit from

both sides as θ → 0, which will be denoted by r(0). Let β′
δ̃
(θ) ≡ dβδ̃(θ)

dθ
. By L’Hopital’s
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rule,

r(0) ≡ lim
θ→0

b̃(θ)βδ̃ (θ)− c̃
θβδ̃ (θ)

=
limθ→0[b̃(θ)βδ̃ (θ)− c̃]′

limθ→0[θβδ̃ (θ)]′
=

=
limθ→0

[
γβδ̃ (θ) + [b (0) + γθ] β′

δ̃
(θ)
]

limθ→0

[
βδ̃ (θ) + θβ′

δ̃
(θ)
] =

=
γβδ̃ (0) + b (0) β′

δ̃
(0)

βδ̃ (0)
= γ + b (0)

β′
δ̃

(0)

βδ̃ (0)
.

Since γ > 0, b(0) > 0, βδ̃(0) > 0 and β′
δ̃
(0) > 0, it follows that r(0) > 0.

I will now show that r(θ̄) > r(0) for all θ̄ < 0 and that r(θ̄) < r(0) for all θ̄ > 0. Since

β′
δ̃
(θ)

βδ̃(θ)
=
−dF (T̃ ;θ)

dθ

1− F (T̃ ; θ)
,

it follows from Assumption S2 that
β′
δ̃
(θ)

βδ̃(θ)
is non-increasing in θ.

Take any θ̄ < 0. Then for all θ ∈ (θ̄, 0), βδ̃(θ) > βδ̃(θ̄), and hence

β′
δ̃
(θ)

βδ̃(θ̄)
>
β′
δ̃
(θ)

βδ̃(θ)
≥
β′
δ̃
(0)

βδ̃(0)
.

Then the difference βδ̃(0)− βδ̃(θ̄) could be bounded below by

βδ̃(0)− βδ̃(θ̄) =

∫ 0

θ̄

β′
δ̃
(θ)dθ = βδ̃(θ̄)

∫ 0

θ̄

β′
δ̃
(θ)

βδ̃(θ̄)
dθ > βδ̃(θ̄)

∫ 0

θ̄

β′
δ̃
(0)

βδ̃(0)
dθ = −θ̄βδ̃(θ̄)

β′
δ̃
(0)

βδ̃(0)
,

therefore
βδ̃(θ̄)−βδ̃(0)

θ̄βδ̃(θ̄)
>

β′
δ̃
(0)

βδ̃(0)
. Substituting c̃ = b(0)βδ̃(0) and b̃(θ̄) = b(0) + γθ̄,

r(θ̄)− r(0) =
b̃(θ̄)βδ̃(θ̄)− c̃

θ̄βδ̃(θ̄)
− γ − b(0)

β′
δ̃
(0)

βδ̃(0)
=

=

(
b(0) + γθ̄

)
βδ̃(θ̄)− b(0)βδ̃(0)

θ̄βδ̃(θ̄)
− γ − b(0)

β′
δ̃
(0)

βδ̃(0)
=

= b(0)

[
βδ̃(θ̄)− βδ̃(0)

θ̄βδ̃(θ̄)
−
β′
δ̃
(0)

βδ̃(0)

]
> 0.

The proof that r(θ̄)− r(0) < 0 for all θ̄ > 0 is analogous.

28



Since r(θ) < r(0) and θβδ̃(θ) > 0 for all θ > 0,

∫ θu

0

[
b̃(θ)βδ̃(θ)− c̃

]
dπ(θ) =

∫ θu

0

r(θ)θβδ̃(θ)dπ(θ) ≤ r(0)

∫ θu

0

θβδ̃(θ)dπ(θ).

Similarly, since r(θ) > r(0) and θβδ̃(θ) < 0 for all θ < 0,

∫ 0

θl

[
b̃(θ)βδ̃(θ)− c̃

]
dπ(θ) =

∫ 0

θl

r(θ)θβδ̃(θ)dπ(θ) ≤ r (0)

∫ 0

θl

θβδ̃(θ)dπ(θ).

Adding these two inequalities yields

(A2)

∫
Θ

[
b̃(θ)βδ̃(θ)− c̃

]
dπ(θ) ≤ r(0)

∫
Θ

θβδ̃(θ)dπ(θ).

If
∫

Θ
θβδ̃(θ)dπ(θ) < 0, then it follows from (A1), (A2), and r(0) > 0 that also

∫
Θ

[b(θ)βδ̃(θ)− c]dπ(θ) ≤
∫

Θ

[b̃(θ)βδ̃(θ)− c̃]dπ(θ) < 0.

Proof of Proposition 9. For δ∗ to be inadmissible, there has to exist another decision rule

δ′ that satisfies condition (7), gives the regulator strictly higher payoffs for at least one

proponent type π and does not give lower payoffs to the regulator for any type π.

First, I will show that such a decision rule δ′ must be equal to δ∗ for (c1, σ1). This

is established by considering proponents with beliefs that place mass one on θ̄ > 0 for θ̄

sufficiently close to zero. At θ = 0, the approval probability under δ∗ for the more precise

trial has a higher derivative β′δ∗(·;c1,σ1)(θ)
∣∣∣
θ=0

> β′δ∗(·;c2,σ2)(θ)
∣∣∣
θ=0

. This implies that for

some range of values of θ̄ > 0, proponents who believe that θ = θ̄ find it profitable to

choose (c1, σ1) under δ∗, since at θ = 0 their payoffs equal 0. By the Neyman-Pearson

lemma, any decision rule based on X with variance σ2
1 different from δ∗ (·; c1, σ1) either

violates (7) or offers lower probability of acceptance at θ̄, hence yields a lower payoff

to the regulator. Because of the higher variance of X under the choice of (c2, σ2), the

probability of acceptance at θ̄ is also lower under any decision rule δ′(·; c2, σ2) if the
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proponent is forced to choose (c2, σ2) instead, yielding a lower payoff to the regulator.

Hence, it must be that δ′(·; c1, σ1) = δ∗(·; c1, σ1).

With δ′(·; c1, σ1) = δ∗(·; c1, σ1) fixed, I show that any deviations from δ∗(·; c2, σ2) will

reduce the regulator’s payoff for some proponent type π. It will be useful to consider

proponents who have two-point priors on θ that place probability q on some θ1 < 0 and

probability 1− q on some θ2 > 0, which is sufficiently high so that bβδ∗(·;c2,σ2)(θ2)− c2 >

bβδ∗(·;c1,σ1)(θ2)−c1. Such a value of θ2 exists because as θ →∞, bβδ∗(·;c2,σ2)(θ2)−c2 → b−c2,

whereas bβδ∗(·;c1,σ1)(θ2)− c1 → b− c1 < b− c2.

Given the regulator’s decision rule δ, the expected payoff from conducting a trial

(ci, σi) for such proponent types equals

(A3) q(bβδ(·;ci,σi)(θ1)− ci) + (1− q)(bβδ(·;ci,σi)(θ2)− ci).

Under decision rule δ∗(·; ci, σi), (bβδ∗(·;ci,σi)(θ1) − ci) < 0 and (bβδ∗(·;ci,σi)(θ2) − ci) > 0.

Conducting the trial (ci, σi) is only profitable for proponents with q ∈ [0, qi], where

(A4) qi =
(bβδ∗(·;ci,σi)(θ2)− ci)

(bβδ∗(·;ci,σi)(θ2)− ci)− (bβδ∗(·;ci,σi)(θ1)− ci)
.

By the choice of θ2, (bβδ∗(·;c2,σ2)(θ2)− c2) > (bβδ∗(·;c1,σ1)(θ2)− c1) > 0. I will also establish

below that −(bβδ∗(·;c1,σ1)(θ1) − c1) > −(bβδ∗(·;c2,σ2)(θ1) − c2) > 0. It follows that q2 > q1.

For proponents with q ∈ (q1, q2) it is unprofitable to conduct a trial with design (c1, σ1)

when faced with the test rule δ∗, but it is profitable to conduct a trial with design (c2, σ2).

Suppose that the regulator replaced δ∗(·; c2, σ2) with a different decision rule δ′(·; c2, σ2).

First, it follows from the Neyman-Pearson lemma that either βδ′(·;c2,σ2)(0) > βδ∗(·;c2,σ2)(0)

or βδ′(·;c2,σ2)(θ2) < βδ∗(·;c2,σ2)(θ2). If βδ′(·;c2,σ2)(0) > βδ∗(·;c2,σ2)(0) then δ′(·; c2, σ2) makes

the trial profitable for proponents who are certain about θ for some values θ < 0 suffi-

ciently close to 0, therefore δ′ cannot dominate δ∗. Thus, it must be that βδ′(·;c2,σ2)(θ2) <

βδ∗(·;c2,σ2)(θ2).

The acceptance probability of δ′ at θ1 could either be βδ′(·;c2,σ2)(θ1) ≤ βδ∗(·;c2,σ2)(θ1) or

βδ′(·;c2,σ2)(θ1) > βδ∗(·;c2,σ2)(θ1). In the first case, the proponent’s payoff from trial (c2, σ2) is
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strictly lower than under δ∗. Proponents with some beliefs q ∈ (q1, q2) will no longer find

it profitable to conduct the trial (c2, σ2) and thus will not conduct any trial. According

to Proposition 5, a regulator with decision rule δ∗ gets a positive expected payoff from

their participation, thus δ′ yields a strictly lower payoff for this type of proponent and

does not dominate δ∗. In the second case, βδ′(·;c2,σ2)(θ1) > βδ∗(·;c2,σ2)(θ1), there are two

possibilities. A proponent with beliefs q ∈ (q1, q2) may stop participating, thus reducing

the regulator’s payoff to zero. If the proponent still finds it profitable to conduct the trial

facing decision rule δ′(·; c2, σ2), the regulator will get a lower payoff from this proponent

type because δ′ has a lower acceptance probability for good innovations with θ = θ2 and

a higher probability of accepting bad innovations with θ = θ1. Therefore, there is no

alternative decision rule δ′ that dominates δ∗(·; ci, σi).

It remains to be shown that −(bβδ∗(·;c1,σ1)(θ1)− c1) > −(bβδ∗(·;c2,σ2)(θ1)− c2) > 0. Let

T ∗i = σiΦ
−1
(
1− ci

b

)
be the threshold of the decision rule δ∗(·; ci, σi). By the design of

δ∗(·; ci, σi), ci = bβδ∗(·;ci,σi)(0) = b(1− Φ(T ∗i /σi)). Then

bβδ∗(·;ci,σi)(θ)− ci = b

(
1− Φ

(
T ∗i − θ
σi

))
− b
(

1− Φ

(
T ∗i
σi

))
= b

∫ T ∗i /σi

(T ∗i −θ)/σi
φ(t)dt.

Since c2 < c1 < b/2,
T ∗2
σ2

= Φ−1
(
1− c2

b

)
>

T ∗1
σ1

= Φ−1
(
1− c1

b

)
> Φ−1

(
1
2

)
= 0 and∣∣∣ θσ1

∣∣∣ > ∣∣∣ θσ2

∣∣∣. It follows that for any θ < 0,

∫ T ∗1 /σ1

(T ∗1−θ)/σ1

φ(t)dt <

∫ T ∗2 /σ2

(T ∗2−θ)/σ2

φ(t)dt < 0,

therefore bβδ∗(·;c1,σ1)(θ)− c1 < bβδ∗(·;c2,σ2)(θ)− c2 < 0.
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